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Abstract

A novel pendulum vibration absorber with a rotational base is proposed for neutralization of vertical excitations. The

characteristic frequency of the absorber can be dynamically tuned over a wide range by varying the rotational speed. The

external disturbance is countered by the inertial force of the revolving mass, whose angular momentum is not affected by

the external excitation. As a result minimal power is required to sustain the system in steady state. This paper first derives

the characteristic frequency of the rotational pendulum as function of the rotational rate. A pair of symmetric pendulums

are then installed on a primary structure subject to harmonic disturbances. It is shown how the pendulum absorber is

capable of balancing the external excitation. Asymptotic stability of the linearized system is also proved. Numerical

simulations are then conducted to illustrate the performance of the system. Finally a variant design resembling a fly-ball

governor is presented; it has the merit of ensuring simultaneous motions of two symmetric rotational pendulums so that

lateral oscillations are canceled. The proposed scheme is suitable for an active vibration control system where there is a

constraint on the power or force capacity of a linear actuator.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Pendulum vibration absorbers have been installed in high-rise buildings, bridges, and other civil structures
to attenuate wind-excited vibrations [1,2]. Compared to a conventional vibration absorber made of a movable
mass and a flexible member, a simple pendulum is more rugged, easily constructed, and suitable for heavy-
duty jobs. The rolling-ball vibration absorber [3] can be considered to be a variant of the pendulum absorbers.
However, such horizontally movable absorbers are rarely used in mechanical apparatuses for the following
reasons. Firstly, the characteristic frequency of a simple pendulum is relatively low due to the length
constraint. For example, in order to have a natural frequency larger than 3Hz, the pendulum rod must be
shorter than 3 cm. Secondly, since the characteristic frequency is fixed, a passive pendulum absorber is not
suitable for excitations of time-varying frequencies. The third reason is that a simple gravitational pendulum
can only counter horizontal vibrations. Other types of pendulum absorbers are available for attenuation of
non-horizontal vibrations: the centrifugal pendulum absorber (see e.g. Refs. [4–6]) utilizes the rotational
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

d (harmonic) disturbance on the primary
structure

d0 amplitude of the disturbance
g acceleration due to gravity
kp proportional gain for speed regulation
‘ length of the pendulum
m lumped mass of the pendulum
m0; k0; b0 mass, stiffness, and damping coefficient

of the primary structure, respectively
m1 summed mass of the balls in the fly-ball

mechanism
m2 mass of the slider in the fly-ball mechan-

ism

p deviation of angular speed ð _fÞ from o0

q deviation of y from y0
u torque exerted by the driving motor
x displacement of the primary structure
y, y0 angular displacement and equilibrium

angle of the pendulum about a lateral
axis, respectively

_f rotational speed of the pendulum about
the vertical axis

o0 target (constant) rotational speed of
pendulum about the vertical axis

on characteristic frequency (rad/s) of the
rotational pendulum
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centrifugal field to generate a restoring force tangential to the rotor, thus capable of neutralizing torsional
disturbances. In an autoparametric system [7–10], simple pendulums can be devised to absorb vertical
vibrations from the primary structure if a stringent condition is satisfied. Such autoparametric resonance is
due to nonlinear coupling between the primary structure and the pendulum subsystem. For quadratic
nonlinearities, it requires that the natural frequencies of the primary structure, the pendulum absorber, and
the external excitation be tuned in a specific ratio (2:1:2).

This paper proposes a rotational pendulum absorber for neutralization of vertical disturbances. The
characteristic frequency of the pendulum absorber can be dynamically tuned over a wide range by adjusting
the rotational speed. The proposed scheme has the benefits of low-power consumption of a passive vibration
absorber and flexibility of an active device. While an electric motor is needed to turn the pendulum to a
set speed, the external power required to sustain the system is minimal in steady state. This is because the
external disturbance is not directly countered by the actuator but by the inertial force of the revolving mass,
whose angular momentum is not affected by the external excitation. By contrast, in other active vibration
control schemes (such as Refs. [11–14]), a portion of the external disturbance is directly balanced by the
actuating force. The power capacity of the actuator must significantly increase with the magnitude of the
disturbance.

The rest of the paper is arranged as follows. In Section 2 the characteristic frequency of a rotational
pendulum is derived. The relationship between the frequency of vertical swings of the pendulum and its
rotational speed is established. In Section 3 a symmetric pair of rotational pendulums are mounted on a single-
free-degree-of-freedom primary structure which is subject to a harmonic disturbance. It is analyzed how the
disturbance is neutralized by the rotational pendulums. Stability analysis is conducted on the linearized system
where the rotational speed is regulated by a proportional control law. Section 4 presents the simulation results.
Effects of the length, mass of the rotational pendulum and the magnitude, frequency of the external
disturbance on the system performance are investigated. The feature that the rotational pendulum consumes
minimal power in steady state is demonstrated and physically explained. Section 5 presents a variant design of
the rotational pendulum, where a slider is used to guide the two symmetric pendulums, so that simultaneous
motions are ensured. Section 6 is the concluding remarks.

2. Characteristic frequencies of a rotational pendulum

Fig. 1b depicts a pendulum revolving about a vertical axis, in contrast to a simple pendulum swinging
horizontally (Fig. 1a). For simplicity the rotational pendulum is assumed to have a length ‘ and a lumped
mass m at the tip. The damping and frictional forces are neglected. In this section we will investigate
the natural frequency of the rotational pendulum when its base is turning at a constant speed, denoted
by o0.
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Fig. 1. (a) Horizontally swinging pendulum; (b) vertically swinging pendulum with a revolving support.
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Fig. 2. Rotational pendulum at a constant speed.
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The governing equation of the rotational pendulum can be derived using the Lagrange equation. Referring
to Fig. 2, the kinetic energy and potential energy are, respectively,

T ¼ 1
2
m½ð‘ _yÞ2 þ ð‘o0 sin yÞ

2
� (1)

V ¼ mg‘ð1� cos yÞ (2)

where y is the angular displacement of the pendulum in the vertical direction. Let

L ¼ T � V (3)

From the Lagrange equation,

d

dt

qL

q_y

� �
�

qL
qy
¼ 0 (4)

we have

m‘2 €yþmg‘ sin y� 1
2
m‘2o2

0 sin 2y ¼ 0 (5)

Let €y ¼ 0 in Eq. (5). The equilibrium angle for the pendulum, denoted by y0, satisfies

mg‘ sin y0 � 1
2
m‘2o2

0 sin 2y0 ¼ 0 (6)

Since sin 2y0 ¼ 2 sin y0 cos y0, Eq. (6) can be reduced to

y0 ¼ 0 if o0 ¼ 0 (7)

g� ‘o2
0 cos y0 ¼ 0 if o0a0 (8)

Denote q to be a small deviation of y from the equilibrium, i.e.,

q ¼ y� y0 (9)

From Eqs. (5) and (6) the linearized dynamic equation about the equilibrium can be calculated to be

m‘2 €qþ ðmg‘ cos y0 �m‘2o2
0 cos 2y0Þq ¼ 0 (10)
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If o0 ¼ 0 (so that y0 ¼ 0), Eq. (10) reduces to

‘ €qþ gq ¼ 0, (11)

which is the linearized equation of a simple pendulum.
Now consider the non-trivial case where o0a0. Substitution of Eq. (8) into Eq. (10) leads to

€qþ ðcos2 y0 � cos 2y0Þo2
0q ¼ 0 (12)

Using the identity that cos 2y0 ¼ cos2 y0 � sin2 y0, Eq. (12) can be expressed as

€qþ o2
0 sin

2 y0 q ¼ 0 (13)

The characteristic frequency ðonÞ of the rotational pendulum is thus shown to be

on ¼ o0 sin y0 (14)

Furthermore, a solution of o0 can be found in terms of on: from Eq. (8),

g

‘o0

� �2

¼ o2
0 cos

2 y0 (15)

Squaring both sides of Eq. (14) and adding the result to Eq. (15) yield

o2
n þ

g

‘o0

� �2

¼ o2
0 (16)

It can be expressed as a quadratic equation in o2
0:

‘2ðo2
0Þ

2
� ‘2o2

no
2
0 � g2 ¼ 0 (17)

Solving Eq. (17) for o2
0 yields

o2
0 ¼

o2
n þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o4

n þ 4ðg=‘Þ2
q

2
(18)

Fig. 3 shows the equilibrium angle and the normalized natural frequency of the rotational pendulum as a
function of the normalized angular speed. It is seen that for the rotational pendulum to have a non-zero
equilibrium, the angular speed must be larger than the natural frequency of a simple pendulum ð

ffiffiffiffiffiffiffi
g=‘

p
Þ.

Moreover, the natural frequency almost matches the angular speed when the later is larger than two times the
frequency of a corresponding simple pendulum.
3. Rotational pendulum as a vibration absorber

A single-degree-of-freedom primary structure equipped with a symmetric pair of rotational pendulums will
be analyzed in this section. As shown in Fig. 4, the structure is subject to a harmonic disturbance possibly
caused by a rotary machine. The pendulums are supported by a shaft which is driven by a motor. The mass,
stiffness, and damping coefficient of the primary structure are, respectively, m0, k0, and b0, as indicated
in Fig. 5. Each of the two symmetric pendulums has a length of ‘ and a lumped mass of 1

2 m. Governing
equations of the system are derived as follows.

The kinetic and potential energy of the system are, respectively, obtained to be

T ¼ 1
2
m½ð‘ _y sin yþ _xÞ2 þ ð‘ _y cos yÞ2 þ ð‘ _f sin yÞ2� þ 1

2
m0 _x

2 (19)

V ¼ mg‘ð1� cos yÞ þ 1
2
k0x2 (20)

where _f is the rotational speed of the pendulums. Note that the term ðm0 þmÞgx is not included in V, since the
origin of x is taken to be the equilibrium position.
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Fig. 3. (a) Equilibrium angle versus rotational speed for the pendulum absorber; (b) natural frequency versus rotational speed.

Fig. 4. Rotational pendulums installed on a primary structure subject to a harmonic disturbance.
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3.1. Constant rotational speeds

First we consider the situation in which the rotational speed is kept constant, i.e., _f ¼ o0. Two degrees of
freedom remain in this system, namely the oscillation of the primary structure and the up-down swing of the
pendulum.

Define L as in Eq. (3), where T and V are given in Eqs. (19) and (20). The Lagrange equations for the x and
y coordinates are derived below.
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Using Eq. (4) we have

m‘2 €yþm‘ð €xþ gÞ sin y� 1
2
m‘2 _f2 sin 2y ¼ 0 (21)

And from

d

dt

qL
q _x

� �
�

qL
qx
¼ �b0 _xþ d (22)

where d is the harmonic disturbance, we have

m‘ €y sin yþ ðmþm0Þ €xþm‘ _y
2
cos yþ k0xþ b0 _x ¼ d (23)

Similar to Eq. (13), Eq. (21) is linearized about the equilibrium angle ðy0Þ to be

m‘2 €qþ ðm‘ sin y0Þ €xþ ðm‘2o2
0 sin

2 y0Þq ¼ 0 (24)

Note that _f is replaced by o0 since it is assumed to be a constant. Eq. (23) can also be readily linearized to be

ðm‘ sin y0Þ €qþ ðmþm0Þ €xþ k0xþ b0 _x ¼ d (25)

Eqs. (24) and (25) can be written in matrix form to be

M€zþ Kzþ C_z ¼ ½0 d�T (26)

where z ¼ ½q x�T,

M ¼
m‘2 m‘ sin y0

m‘ sin y0 mþm0

" #
; K ¼

m‘2o2
0 sin

2 y0 0

0 k0

" #
(27)

and

C ¼
0 0

0 b0

" #
(28)

Since M and K are symmetric and positive definite matrices, and C is a positive semi-definite matrix, Eq. (26)
depicts a two-degree-of-freedom passive structure under forced vibration. Let

d ¼ d0 sinðontþ cÞ (29)

where d0 is the amplitude and c is an arbitrary phase angle. If o0 is chosen according to Eq. (18), we have
on ¼ o0 sin y0. The steady-state solution to Eq. (26) will be x ¼ _x ¼ 0, and

q ¼ a sinðontþ cÞ (30)

where

a ¼ �
d0

m‘o2
n sin y0

(31)



ARTICLE IN PRESS
S.-T. Wu / Journal of Sound and Vibration 323 (2009) 1–16 7
The solution can be checked by substitution of Eqs. (30) and (31), and x ¼ _x ¼ 0 back into Eqs. (24) and (25).
It is thus shown that the rotational pendulum acts as a vibration absorber to a harmonic disturbance whose
frequency is equal to o0 sin y0.

3.2. Proportional control

In practice the rotational speed is not a constant but can be regulated at the desired speed by a simple
proportional control law, that is

u ¼ kpðo0 �
_fÞ (32)

where u is the torque exerted on the shaft supporting the pendulums, and kp is a positive constant. The system
now has one more degree of freedom. It will be shown below that the linearized system of the three-degree-
of-freedom system is asymptotically stable.

From

d

dt

qL

q _f

� �
�

qL
qf
¼ u, (33)

we have

m‘2ð €f sin2 yþ _f_y sin 2yÞ ¼ u (34)

Denote the deviation of the angular speed from o0 to be p, i.e.,

p ¼ _f� o0 (35)

From the definitions of p and q, we have

€f ¼ _p (36)

_y ¼ _q (37)

u ¼ �kpp (38)

Substituting Eqs. (35)–(38) into Eq. (34) and dropping the nonlinear terms lead to

ðm‘2sin2 y0Þ _pþ ðm‘2o0 sin 2y0Þ _q ¼ �kpp (39)

As shown in the Appendix, the linearized equation of Eq. (21) can be derived to be

m‘2 €qþ ðm‘ sin y0Þ €x� ðm‘2o0 sin 2y0Þpþ ðm‘2o2
0 sin

2 y0Þq ¼ 0 (40)

The linearized equation for Eq. (23) is

ðm‘ sin y0Þ €qþ ðmþm0Þ €xþ k0xþ b0 _x ¼ 0 (41)

which is the same as Eq. (25) except that the forcing term d is dropped.
Similar to Eq. (26), Eqs. (40) and (41) can be expressed in matrix form to be

M€zþ Kzþ C_z�Dp ¼ 0 (42)

where M, K, and C are as defined previously, and

D ¼
m‘2o0 sin 2y0

0

" #
(43)

3.3. Stability analysis of the linearized system

With an appropriate Lyapunov function it will be proved that the linearized system governed by Eqs. (39)
and (42) is asymptotically stable.
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Let

V L ¼
1
2
_zTM_zþ 1

2
zTKzþ 1

2
gp2 (44)

where g ¼ m‘2 sin2 y0. Since M and K are positive definite, and g40, it follows that V LX0; in other words,
VL is lower bounded. The time derivative of V L is calculated to be

_V L ¼ � _z
TM€zþ zTK_zþ gp _p (45)

¼ _zTð�Kz� C_zþDpÞ þ zTK_zþ gp �
m‘2o0 sin 2y0

g
_q�

kp

g
p

� �
(46)

¼ � _zTC_z� kpp2 (47)

¼ � b0 _x
2 � kpp2 (48)

Eq. (46) is obtained using Eqs. (42) and (39) to substitute for €z and _p, respectively, in Eq. (45). Note that in
Eq. (46), the term _zTDp cancels with the term associated with _q.

Since VL is lower bounded and its time derivative, _V L, is less than or equal to zero, it follows that _V L must
tend to zero, expressed as _V L ! 0. From Eq. (48) we have _x! 0 and p! 0, which also imply €x! 0 and
_p! 0. Substitution of _x ¼ €x ¼ _p ¼ p ¼ 0 back into Eqs. (39) and (42) leads to z ¼ _z ¼ 0. It is thus proved
that the linearized system is asymptotically stable.

Note that while the primary structure is assumed to have only one degree of freedom, the stability analysis
can be readily generalized to structures with multiple degrees of freedom. The difference would be in the mass
and stiffness matrices (M and K), which are symmetric and positive definite for a passive mechanical structure.
4. Simulation results

Numerical simulations are conducted to test the performance of the rotational pendulum absorber. The
simulated system, as depicted in Fig. 5, is governed by the original nonlinear dynamic equations, namely
Eqs. (21), (23), and (34). The rotational speed is regulated by the proportional law of Eq. (32). The parameters
of the system are assumed to be: m0 ¼ 10 kg, k0 ¼ 1000N=m, b0 ¼ 40N s=m; the lumped mass of the
pendulum (m) is 2 kg, and the length ð‘Þ is 0.2m. The frequency of the disturbance is 10Hz (62.8 rad/s). The
rotational speed of the pendulum will be regulated at the value calculated by Eq. (18). Two different
disturbance amplitudes are simulated.
4.1. Case A: d0 ¼ 50N

Figs. 6 and 7 show the results for d0 ¼ 50N. (Without vibration control, the primary structure would
oscillate at an amplitude of about 0.001m.) In the simulation the proportional gain kp is equal to 0.1 for
t ¼ 0–15 s, and is zero after 15 s. (That is, the control power is turned off after 15 s.) It is seen in Fig. 6 that
vibrations of the primary structure are nearly eliminated by the rotational pendulum. Fig. 7 shows that in
steady state the vertical swing of the pendulum is 180 1 out of phase with the disturbance so that the two forces
cancel each other. Note that the pendulum absorber continues to function well even after the control input is
turned off. This will be further elaborated later.
4.2. Case B: d0 ¼ 500N

In the second simulation the amplitude of the disturbance is raised to 500N. (For this amplitude the
primary structure would oscillate at an amplitude of about 0.01m without vibration control.) The
proportional gain is set in the same way as in the previous case. Figs. 8 and 9 show the simulation results. It is
seen that oscillations of the primary structure are also neutralized near perfectly. As expected the pendulum
undergoes larger swing, since the magnitude of the disturbance is 10 times as large as the previous case.



ARTICLE IN PRESS

0 5 10 15 20
-1

0

1
x 10-3

0 5 10 15 20
-0.2

0

0.2

0 5 10 15 20
60

62

64

Time (sec) 

u 
(N

/m
)

x 
(m

) 
�

 (r
ad

/s
ec

) 

Fig. 6. Time response of the system for d0 ¼ 50N: (a) vibrations of the primary structure; (b) torque applied to the shaft; (c) rotational
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Fig. 7. Close-ups of steady-state response: (a) external disturbance; (b) up–down swing of the pendulum; (c) rotational speed.
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4.3. Frequency response

The frequency response of the linearized system (Eqs. (25), (39) and (40)) with d as input and x as output
is plotted in Fig. 10. The angular speed ðo0Þ is selected for a characteristic frequency of 10Hz; that is,
on ¼ 20p ðrad=sÞ in Eq. (18). The parameters are the same as used in the above time-domain simulations.
The dashed curve in Fig. 10 is the response for the uncontrolled system, in which the rotational pendulum is
removed and the pendulum weight is added to the primary body (for a fair comparison). It is seen that the
solid curve has a dip at 10Hz, indicating complete neutralization of disturbance at this frequency.
4.4. Parametric analysis

The effect of the mass, length, and rotational speed of the pendulum is investigated by numerically
experimenting on the system, varying one parameter at a time. Effectiveness of the rotational pendulum can be
measured by the attenuation ratio, defined as the ratio of the magnitude of the residual vibrations of the
primary structure when the absorber is inactive (i.e., when the pendulum is vertically down and non-rotating)
to the magnitude when the absorber is active. For example, in Case A the magnitude of x without vibration
control is 0.001m, while it tends to be 3:7� 10�6 m with vibration control. The attenuation ratio would be
0:001=3:7� 10�6 ¼ 270. Figs. 11 and 12 show the attenuation ratio as a function of the magnitude of the
disturbance. It is seen that the smaller the disturbance magnitude, the higher the attenuation ratio. This is
because with large d0 the pendulum must undergo large swinging to counteract the disturbance, resulting in
significant deviation from the linearized dynamics. On the other hand, increasing the length of the pendulum
substantially improves the attenuation ratio, because with longer arms the angular up–down swinging is
smaller for the same disturbance magnitude. Comparing Figs. 11 and 12, one can see that the absorber is more
effective for higher disturbance frequency. This is because with larger rotational speed the pendulum
undergoes smaller up–down swinging for the same magnitude of disturbance. Moreover, from Fig. 3 the
equilibrium angle of the pendulum is closer to 90 1, the ideal horizontal posture, for higher rotational speed.

To examine the effect of the pendulum mass, the attenuation ratio is measured by varying m from 0.5 to 3 kg
for d0 ¼ 500N and for a disturbance frequency of 10Hz. The result is shown in Fig. 13, where it is seen that
the pendulum mass also has a significant effect on the attenuation ratio: the larger the mass, the higher the
attenuation ratio.

To summarize, the rotational pendulum is most effective for high-frequency disturbances. For low-
frequency or high-magnitude disturbances, either the length or the mass of the pendulum must be increased. It
is interesting to note that, given d0 ¼ 500N and m ¼ 2 kg, the length of the pendulum required to achieve an
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attenuation ratio of 100 is 0.46m for an excitation frequency of 5Hz; it is reduced to 0.15m for a frequency of
10Hz. For frequencies of 20 and 30Hz, the length is further reduced to 0.05 and 0.031m, respectively.
4.5. Applied torque and power input

In the simulations the torque applied to the rotational shaft is set to zero after 15 s, but the pendulum
maintains its rotation and keeps functioning well. In other words, once the pendulum reaches the set speed,
it becomes self-functional without power input. This feature is explained below.

If air resistance and frictional force on the rotary parts are neglected, as are assumed in the simulations, the
angular momentum of the system in the vertical direction is invariant after the torque is set to zero. This is
because none of the gravitational force, the linear damping and spring force, or the harmonic disturbance has
a moment component in the vertical direction. As a result, when the arm of the pendulum extends horizontally
(as y is closer to 90 1), its angular speed decreases; when the arm contracts (as y deviates away from 90 1),
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its angular speed increases in such a way that the angular momentum remains constant. This phenomenon is
illustrated in Figs. 7b, c and 9b, c.

In practice minimal power is required to compensate for air drag and frictions. However, the sustaining
power is largely independent of the external excitation. This is in contrast to most active vibration control
techniques in which a linear actuator counters the disturbing force directly, so that the capacity of the actuator
must be proportional to the magnitude of disturbances.
5. Design issue

Fig. 14 shows a variant design of the rotational pendulum. It resembles a fly-ball governor. The two
symmetric pendulums are constrained to move simultaneously by the slider. If the inertia of the slider is much
smaller than the sum of the pendulums, i.e., m25m1, this fly-ball mechanism is equivalent to the rotational
pendulum. However, it has the benefit of ensuring symmetric motion for the two pendulums so that lateral
oscillations are canceled. The mechanism can also be tilted to tackle non-vertical disturbances, as shown in
Fig. 14b.
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The characteristic equation for the fly-ball mechanism can be developed in the same way as for the original
rotational pendulum. For completeness it is presented below.

At constant rotation, the kinetic energy and the potential energy are, respectively,

T ¼ 1
2m1½ð‘ _yÞ

2
þ ð‘o0 sin yÞ

2
� þ 1

2m2ð2‘ _y sin yÞ
2 (49)

V ¼ m1g‘ð1� cos yÞ þ 2m2g‘ð1� cos yÞ (50)

where the rotational inertia of the slider has been neglected.
Similar to Eq. (5), the governing equation can be derived to be

ðm1 þ 4m2 sin
2 yÞ‘2 €yþ ðm1 þ 2m2Þg‘ sin yþ 4m2‘

2 _y
2
sin 2y� 1

2
m1‘

2o2
0 sin 2y ¼ 0 (51)

Compared to Eq. (8), at equilibrium

ðm1 þ 2m2Þg�m1‘o2
0 cos y0 ¼ 0 if o0a0 (52)

And similar to Eq. (13), the characteristic equation can be derived to be

ðm1 þ 4m2 sin
2 y0Þ €qþm1o2

0 sin
2 y0q ¼ 0 (53)

The characteristic frequency of the fly-ball mechanism is thus obtained to be

on ¼ o0 sin y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1

m1 þ 4m2 sin
2 y0

r
(54)

A closed-form formula relating o0 to on similar to Eq. (18) may not be available. However, the relations
can be obtained by numerically solving Eqs. (52) and (54), as shown in Fig. 15. In this figure, the normalized
rotational speeds are plotted against the normalized characteristic frequency for m2=m1 varying from 0 to 5.
Note that the curve for m2=m1 ¼ 0 is governed by Eq. (18).
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Fig. 15. Rotational speed versus characteristic frequency of the fly-ball mechanism for m2=m1 ¼ 0�5. The bottom curve is governed by

Eq. (18).
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6. Conclusions

A pendulum with a spinning base is shown to be capable of neutralizing a vertical, harmonic excitation. The
characteristic frequency of the rotational pendulum can be dynamically tuned over a wide range. Compared to
a centrifugal pendulum absorber, in which the forward motion (i.e., the tangential velocity) of the pendulum is
parallel to, and therefore strongly coupled with, its back-and-forth swings, the up–down oscillation of the
rotational pendulum is better decoupled with its forward movement since the two motions are perpendicular
to each other. The proposed scheme utilizes the inertial force of a moving object to balance the external
disturbance, which has no effect on the angular momentum of the pendulum. As a result, except for the need
to compensate for air drag and rotational frictions, no external power is required to sustain the system. The
scheme is therefore suitable for an active vibration control system where energy consumption is a concern and
there is a constraint on the power or force capacity of a linear actuator.

Appendix A. Derivation of Eq. (40)

For Eq. (21), the third term on the left-hand side is expanded to be

�1
2
m‘2 _f2 sin 2y ¼ � 1

2
m‘2ðo0 þ pÞ2 sin 2ðy0 þ qÞ

¼
:
� 1

2
m‘2ðo2

0 sin 2y0 þ 2po0 sin 2y0 þ 2qo2
0 cos 2y0Þ

¼ � 1
2
m‘2ðo2

0 sin 2y0 þ 2po0 sin 2y0 þ 2qo2
0ðcos

2y0 � sin2 y0ÞÞ (55)

And the term associated with g in Eq. (21) is expanded to be

m‘g sin y ¼ m‘g sinðy0 þ qÞ

¼
:

m‘gðsin y0 þ q cos y0Þ (56)

From Eq. (8),

g ¼ ‘o2
0 cos y0 (57)

Substitution of Eq. (57) into Eq. (56) yields

m‘g sin y¼: 1
2
m‘2ðo2

0 sin 2y0 þ 2qo2
0cos

2 y0Þ (58)

which cancel with the corresponding terms in Eq. (55). Thus Eq. (40) results.
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